Force is a signal that cells cannot ignore

نویسندگان

  • Erik C. Yusko
  • Charles L. Asbury
چکیده

Cells sense biochemical, electrical, and mechanical cues in their environment that affect their differentiation and behavior. Unlike biochemical and electrical signals, mechanical signals can propagate without the diffusion of proteins or ions; instead, forces are transmitted through mechanically stiff structures, flowing, for example, through cytoskeletal elements such as microtubules or filamentous actin. The molecular details underlying how cells respond to force are only beginning to be understood. Here we review tools for probing force-sensitive proteins and highlight several examples in which forces are transmitted, routed, and sensed by proteins in cells. We suggest that local unfolding and tension-dependent removal of autoinhibitory domains are common features in force-sensitive proteins and that force-sensitive proteins may be commonplace wherever forces are transmitted between and within cells. Because mechanical forces are inherent in the cellular environment, force is a signal that cells must take advantage of to maintain homeostasis and carry out their functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

معرفی روش استفاده از سیگنال مکانومیوگرام در ارزیابی عملکرد عضلات

  Background and aims   Recordings of electrical activity in the muscle and surface electromyography (EMG) have been widely used in the field of applied physiology. In parallel to  recording of the EMG, the detectable low-frequency vibration signal generated by the skeletal  muscle has been known and well documented. As the nature of the signal has been progressively   revealed, the term of mec...

متن کامل

Evaluation of the effect of dendritic branching on signal processing in hippocampus pyramidal cells

Since branching region of an active nerve fiber is an abrupt widening of the structure, two concepts emerge: first, the stimulating current must be sufficient to raise the outgrowing fibers above the thresh¬old, and secondly, the stimulating current will be divided in proportion to the characteristic admittance of the branches. On the other hand, blocking of the nerve impulse in this region is ...

متن کامل

Evaluation of the effect of dendritic branching on signal processing in hippocampus pyramidal cells

Since branching region of an active nerve fiber is an abrupt widening of the structure, two concepts emerge: first, the stimulating current must be sufficient to raise the outgrowing fibers above the thresh¬old, and secondly, the stimulating current will be divided in proportion to the characteristic admittance of the branches. On the other hand, blocking of the nerve impulse in this region is ...

متن کامل

Hymenoplasty: Benefit or Corruption

Hymenoplasty is a surgery that doctors perform to repair girl `s virginity who lost it through virginal intercourse or other accidents. During their practice, doctors may face demands that do not have a therapeutic effect and are derived from the cultural and customary considerations of society. Given the fact that the doctor should also consider the patient's greatest benefit in such cases and...

متن کامل

Logical s-t Min-Cut Problem: An Extension to the Classic s-t Min-Cut Problem

Let $G$ be a weighted digraph, $s$ and $t$ be two vertices of $G$, and $t$ is reachable from $s$. The logical $s$-$t$ min-cut (LSTMC) problem states how $t$ can be made unreachable from $s$ by removal of some edges of $G$ where (a) the sum of weights of the removed edges is minimum and (b) all outgoing edges of any vertex of $G$ cannot be removed together. If we ignore the second constraint, ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2014